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Abstract Identifying and/or predicting the geogra-

phy of malaria will help decision makers locate the

particular area with the health problem, and to design

area-specific interventions. Using GIS (ArcMap 10.1),

a spatial analysis of environmental factors that con-

tribute to the spread of malaria vector was conducted

to develop a malaria susceptibility model that could be

used in effective malaria control planning. The study

first determined malaria susceptibility index and

combined it with geospatial modelling to predict

malaria susceptibility. Clinical malaria cases were

then geocoded and tested to determine the accuracy of

the prediction. The results show that 72.3, 24.5, 3.1

and 0.1 % of the clinical malaria incidence were found

in areas that were predicted to have very high, high,

low and very low susceptibility levels. Hence, the

model, to a large extent, predicted malaria occur-

rences. The conclusion is that modelling such as this

can help determine spatio-temporal prediction and

mapping of malaria incidence to aid in the design and

administration of appropriate interventions.

Keywords ArcMap � Geospatial modelling � GIS �
Malaria susceptibility index � Saboba

Introduction

In 1854, John Snow used a dot map to identify a cluster

of cholera cases around a public water pump. This

enabled him trace the source of a cholera outbreak in

Soho, London. Snow’s work inspired changes in the

water and waste systems of London and other places in

the world.

Since then, the importance of the geographic

patterns of diseases gained importance. The geogra-

phy of a health issue such as the spatial pattern of

malaria is very vital for the following reasons: (1) to

know the particular area with the health problem, (2)

to enable us trace the source of the causative agent or

variable causing the disease, (3) importantly, to be

able to design area-specific interventions (Rai et al.

2013; Srivastava et al. 2009) or for identifying control

interventions (Niringiye and Douglason 2010; Raso

et al. 2012). Thus, knowing where a disease is

prevalent or most likely to occur will enable stake-

holders respond to it properly. On the other hand, not

knowing the spatial pattern of a disease or where it is

likely to occur will make it difficult to tackle the

problem or the measures could be targeting an entire

ocean when, in fact, the problem may only be

prevalent or likely to be prevalence in a small reef.

Saboba district in Ghana has been hit hard with high

malaria incidence. For example, between 2002 and

2005, recorded malaria cases increased by 57.5 % in

the district (Kursah 2009). On a visit to the hospital
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and the clinics in the district, one is greeted with

countless patients needing treatment; many of whose

cases are diagnosed to be malaria. Despite the high

rate of malaria cases in the district, very little is known

about the spatial pattern or prevalence of the disease.

The reasons for this, as have been argued elsewhere by

Srivastava et al. (2009), are weak surveillance and lack

of geo-referenced malaria data to pinpoint the trouble

spots for timely intervention.

Also, there has not been any predictive model to

estimate where malaria is more or less likely to occur

in the district. Such modelling is a useful tool for

malarial control programme (Rai et al. 2013) and this

can be utilised for spatial targeting of interventions

and optimal resource allocation (Raso et al. 2012).

This is to say that modelling and predicting where

malaria incidence is likely to be high will assist

authorities to spatially target interventions according

to local needs. We are also not aware whether the

public health officials know the environmental

dynamics of the disease. The questions this raises,

which will be the guiding principle of this study are:

(1) Are the public health officials aware of the

environmental dynamics of malaria in the district?

(2) Which areas in the district are most susceptible to

malaria occurrences? (3) Can malaria occurrences be

predicted in the district?

Geographic Information System (GIS) has been

used in modelling and predicting spatial variables in

recent times. This is because GIS is revolutionising the

era of spatial data management through the integration

and analysis of geographically represented data

(Teshebaeva and Jain 2007). Improvement in GIS

and remote sensing technology have created the

possibility for predicting malaria distribution. Studies

around the world have addressed the issue of spatial

analysis of malaria, using a variety of approaches

(Fobil et al. 2012; Ohemeng and Mukherjee 2015).

However, there is scarce evidence of studies address-

ing the issue of modelling and predicting spatial

distribution of malaria in Ghana. Exception is Akpalu

and Codjoe (2013). This study fills-in this important

void and paves the way for future such studies that use

GIS to model and predict the spatial distribution of

malaria.

The study developed a geospatial model using GIS

which will serve as a decision making and planning

tool for malaria control. This study first identified the

peculiar environmental variables favourable for the

breeding of the malaria vector in Saboba district and

used this to develop malaria susceptibility index

(MSI). After this, GIS is used to generate malaria

susceptibility index (MSI) map. This is used to model

and predict the suitability of the area for breeding the

malaria vector and invariably, the occurrence of the

disease. This model could be used in effective malaria

control planning. Finally, clinical malaria data in the

district is used to test the validity of the model

prediction.

Literature review

One’s location may predispose one to malaria infec-

tion. Therefore, geographical analysis of the disease is

vital. For example, proximity to stagnant water bodies

are generally perceived as one of the most important

factors that increase the risk of malaria infection, as it

serves as a vector breeding source. This section

reviews literature on environmental factors suitable for

breeding malaria vector and studies on modelling

spatial distribution of malaria using GIS.

Environmental variables influencing malaria

prevalence

The understanding of the factors that influence malaria

prevalence is vital for the design of policies targeted at

reducing the prevalence (Niringiye and Douglason

2010). Depending on the specific locational dynamics

of an area, distance to water bodies, especially,

stagnant water usually influences malaria incidence.

For example, it has been found that with a decrease in

distances to water bodies, the malaria incidence

increased as more than half (50.5 %) of the malaria

cases occurred within a buffer of less than 500 metres

fromwatercourses in Varanasi district, India (Rai et al.

2013). Studies have also found spatial variation in the

prevalence of malaria (Raso et al. 2012; Srivastava

et al. 2009) and these variations have been influenced

by environmental factors such as rainfall amount,

temperature, humidity and elevation (Cohen et al.

2008; Gemperli et al. 2006). This is because these

factors both directly or indirectly affect the develop-

ment of the malaria vector (anopheles mosquitoes)

and, therefore, affect the geographical distribution of

malaria (Raso et al. 2012). Thus, to monitor malaria

programmes and achieve effective control, predicting
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and assessment of the spatial distribution of malaria is

paramount (Singh et al. 2009).

In Ghana, it has been found that humidity and

rainfall predicted malaria prevalence (Akpalu and

Codjoe 2013). It has also been found that rainfall and

temperature are the two most important drivers of

malaria prevalence while the elevation factor is largely

insignificant in Côte d’Ivoire (Raso et al. 2012). This is

not surprising because the study area does not vary

greatly in terms of elevation to drive the spatial

variation in the breeding of mosquito larvae. A Ugan-

dan study, however, found no relationship between

malaria prevalence and environmental and socio-

economic variables (Niringiye and Douglason 2010).

This is probably due to little variations in these

environmental and socio-economic variables in the

study area.

Kenea et al. (2011) sampled aquatic habitats for

anopheline larvae on the one hand and the associated

environmental variables such as water temperature

and water current on the other hand for analysis. It

was found that abundance of Anopheles arabiensis

larvae was significantly and inversely linked to water

current. Thus, the higher the water current, the lower

the availability of Anopheles arabiensis. Therefore,

dry season anopheline larval habitats such as riverine

sand pools which are created and maintained by

perennial watercourses and water development pro-

jects need to be factored into malaria vector control

operations.

It has also been found that places with higher

malaria cases are the relatively populated centres in

some parts in Northern Ghana (Kursah 2009). Thus,

malaria is highly prevalent in urbanised areas. This

could be explained by the availability of uncontrolled

dug-out pits for building houses, KVIP (a semi-closed

toilet facility), culverts, the presence of empty cans

and plastic materials, which collect water during rains

and serve as reservoir for breeding mosquito larvae.

All these variables are predominantly an urbanised

problem in the district. This finding contradicts the

work of Niringiye and Douglason (2010), which found

no relationship between population density and

malaria prevalence at district level in Uganda. The

explanation could be that higher population density by

itself does not trigger malaria prevalence, but the

actions or inactions (such as creating stagnant water

reservoirs) of that population predispose them to

higher malaria prevalence.

In a Bolifamba (Cameroon) study, malaria preva-

lence has been found to be higher in the inhabitants of

wooden plank houses than those of cement brick

houses. Also, inhabitants of houses surrounded by

bushes or garbage heaps and swamps or stagnant water

showed higher malaria prevalence compared with

those from cleaner surroundings (Nkuo-Akenji et al.

2006). Therefore, poor sanitation and housing condi-

tions are significant susceptibility variables for

malaria burden.

Studies have also found that there is no significant

association between the presence of rivers and malaria

prevalence (Niringiye and Douglason 2010) and

between malaria cases and distances to conventional

water sources such as rivers and streams in Northern

Ghana (Kursah 2009). The reason is that the rivers

have swift flowing current and such flows do not

facilitate high breeding of mosquito larvae. Therefore,

interventions that seek to spray along these water-

courses will have minimal impact at best. This finding

reaffirmed a general belief that stagnant water bodies

which are not captured in conventional aerial GIS

data, are the major sources of breeding mosquito

larvae. However, the finding is contrary to Rai et al.

(2013) which found a significant correlation between

distances to watercourses and malaria prevalence.

Also, nearness to water bodies have been found to be

responsible for high malaria cases (Carter et al. 2000;

Watson 1949) and marshlands and other areas of poor

drainage are major sources of malaria vectors

(Thompson et al. 1997). The explanation for this

discrepancy is the nature of the water bodies—

whether stagnant or swift-flowing, with the former

facilitating breeding of mosquitoes than the latter.

GIS modelling of malaria incidence

The application of GIS can help predict where malaria

is more or less likely to occur and enable health

interventions to be better targeted. For example, Rai

et al. (2013) used GIS to produce a malaria suscep-

tibility map using weighting systems to generate a

malaria distribution map. From this, the authors found

that about 26, 40, and 4 % of malaria cases were found

in areas which had been predicted to be of very high,

high and low susceptibility levels respectively. This

study is, however, deficient in accuracy as areas

predicted to have very high malaria risk constituted

only 26 % of the incidence of the disease.
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Similarly, Raso et al. (2012) predicted the geo-

graphical distribution of malaria infection risk in Côte

d’Ivoire to guide control interventions using geospa-

tial model. This study was a large-scale one and local

variations within areas were not fully incorporated in

the analysis. Tuyishimire (2013), on the other hand,

modelled spatial variation of malaria from one

household to another and from one administrative

unit to another using Getis and Ord statistics and found

a cluster of malaria in Ruhuha in Rwanda.

Using expert knowledge, Ohemeng and Mukherjee

(2015) identified specific environmental factors suit-

able for the malaria vector in Zambezi basin. With

these factors, they used Indicator Kriging Algorithm to

predict the suitability of the area for the Anopheles

mosquito. This allowed the prediction that a particular

location in the area is suitable for the survival and

spread of the Anopheles. The clinical malaria inci-

dence was produced, and compared with the potential

vector distribution zones to determine areas with high

malaria risk. While this approach yields effective

outcome, the Indicator Kriging Algorithm may not be

a convenient method for many stakeholders involved

in public health sector at the local level due to its

complexity.

To sum up, much of the existing literature has

focused on identifying the association of environmen-

tal variables and malaria incidence. Studies focusing

on modelling and predicting where malaria is less or

more likely to occur in space is, however, scarce.

Studies that have done this are outside Ghana. The

exception is Akpalu and Codjoe (2013), but even that

is a countrywide study which may mask localised

conditions. This study fills this void in the existing

literature and serves as a planning tool for malaria

control. It will also pave the way for future researches

in this area. The study tests the developed geospatial

model, using clinical malaria data in Saboba district.

Study area

Saboba district lies at the north-eastern part of the

Northern Region of Ghana (Fig. 1). The district is

located between latitude 9� 2000N and 9� 7000N and

longitude 0� 0000 and 0� 3000E. It covers an area of

about 1775 km2 and a population of 65,706, giving a

density of about 37 persons per square kilometre. The

district is thus, typically, rural in nature and

settlements are very scattered. Saboba is the district’s

administrative and economic capital. The district is

bordered by Chereponi district to the north, Gushiegu

district (west), Yendi district (southwest), Zabzugu

district (south) and the Republic of Togo to the east.

The relief in the district is undulating lowlands

ranging between 50 and 300 m, dissected by River Oti

drainage system and a few minor streams (Fig. 1).

Flooding is common during the rainy seasons in the

district due to spill-over water from River Oti (Kursah

2010, 2013, 2014), which serves almost as the

boundary between Ghana and the Republic of Togo.

Climatically, the district is situated in the warm

and dry savannah zone of Ghana with average

monthly temperatures ranging from 25 to 35 �C.
The north-east trade winds (harmattan) are common

from November to February. During this period,

malaria incidence is minimal because of the intense

cold dry winds and lack of suitable conditions for

mosquito breeding.

The district experiences low and erratic rainfall and

long dry season (October to April) accompanied by

intense heat and sparse vegetation. The rainfall is

single-maxima type, with annual totals ranging

between 750 and 1050 mm. The rains come mainly

from April to September and torrential in nature. This

often causes flooding and erosion leading to the

formation of gullies which facilitate the breeding of

the malaria vector. The monthly maximum malaria

incidence is recorded within this period because of the

presence of hatching grounds and conditions for

breeding of the malaria vector.

Methodology

Acquiring environmental variables influencing

malaria vector breeding and generating MSI was done

in three stages. The model showing the workflows is

shown in Fig. 2.

Environmental variables influencing malaria

vector breeding

A number of environmental variables influence

malaria incidences. These variables are locational

specific. The first stage of the research was to identify

these variables. To identify these variables,
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questionnaires were administered to 60 health workers

in the district through a snow-ball technique. The

public health workers were highly focused because

they possess a lot of experience on public health issues

such as malaria infections than other health workers

do. They were asked to state malaria susceptibility

variables in the district. Their responses were com-

piled to determine the peculiar environmental vari-

ables which predispose people to malaria infection in

the district (Table 1). These environmental variables

do not have equal importance in terms of serving as

breeding grounds for malaria vector. This requires

these variables to be weighted.

Weighting of variables and generation of malaria

susceptibility index

Having determined the peculiar environmental

variables that predispose people to malaria infec-

tion, the second stage of the administration of

questionnaires began. Here, the focus was on the

public health workers. Through a snow-ball tech-

nique, 30 public health workers were asked to

assign scores to these variables ranging from 0 to

10, where 0 means not important at all and 10

means most important for influencing malaria

infection in the district.

Ghana
Ivory Coast

Burkina Faso

Togo

Fig. 1 Map of Saboba district
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Geocoding 

Environmental variables

Clinical malaria 
incidence

Weighting of 
environmental variables 

Availability of environmental 
variables in each community

Testing the 
model’s prediction

Malaria Susceptibility 
Index (MSI)

GIS environment

MSI Map

Fig. 2 The model showing the workflows of the study

Table 1 Environmental variables influencing malaria vector breeding

Environmental variables

Sanitation factors Infrastructural factors

Availability of stagnant water bodies A lot of building and construction sites

Open pits from dugouts (for buildings) and ponds Presence of tyre tracks, and ditches

Presence of open KVIPs Presence of overhead tanks especially opened ones

Unclean surroundings Defunct wells

Vegetation factors Ground level cement tanks especially unsealed ones

Closed to swampy or marshy areas or rice fields Presence of wooden plank houses

Presence of dead trees with trunks e.g. baobab etc. Elevation factor

Behavioural factors Located in lowlying areas

Littered tin cans, containers, and broken calabash Demographic factors

Opened water storage tanks, pots etc. Low literacy of the population

Disposed tyres, barrels etc. High population concentration

Drainage factors Housing factors

Sluggish streams/brooks with sandy margins Houses surrounded by garbage heaps, broken walls

Presence of open gutters or drainage system Tilled roofs

Rainwater pools and puddles Mud houses and poorly designed windows

Close to a dam(s) and garden pools

1106 GeoJournal (2017) 82:1101–1111
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The third stage was to determine the availability of

these environmental variables within the communities

in the district. A set of another 30 questionnaires were

administered to public health workers, including the

District Environmental Officer to rate the availability

of each variable in their communities, on a Likert-type

of scale ranging from 0 to 1, where 0 means the

variable is not present at all or not applicable in that

community and 1 means the variable is most present.

Multiplying the mean score of a variable by its mean

availability score will give the factor weight (level of

significance) of that variable in each community. For

example, if a malaria susceptibility variable such as

the presence of stagnant water is scored 10, and its

availability score in community B is 0.7, then the

factor weight for presence of stagnant water in

community B is 7.0 (that is 10 9 0.7 = 7.0). How-

ever, if the same susceptibility variable has availabil-

ity score in community C to be 0.2 (meaning stagnant

water is not so common), then the factor weight for

that variable in community C will be 2.0

(10 9 0.2 = 2.0). This can be expressed as in Eq. 1.

fw ¼
X vs

nr
�

X vas

nr

� �
ð1Þ

where fw = factor weight, vs = variable score,

vas = variable availability score, nr = number of

responses

The MSI, that is, summation of factor weights

divided by the number of factors for each community

was then determined. Since the highest possible

variable score is 10, and the highest availability score

is 1, then the highest possible malaria susceptibility

index for any community will be 10 (10 9 1 = 10).

This can be expressed as in Eq. 2.

MSI ¼
X fw

nf
ð2Þ

where MSI = Malaria Susceptibility Index, fw = fac-

tor weight, nf = number of factors

The MSI for each community is then geocoded and

used to produce MSI map (Fig. 3).

Acquiring clinical malaria data and geocoding

For the collection of clinical malaria data for testing

the model prediction, out-patient department (OPD)

records of individuals (that included the type of

disease the person was treated of and the place of

residence of the person) were sampled from the

Saboba Medical Centre (the only hospital in the

district), all the health centres (inWapuli, Sambuli and

Kpalba) and all the health posts in the district. Since

detailed information (especially the residence/place of

the patient) is missing after data collation in the

district, the raw and hand-written recorded cases in the

health record books were used. Care was taken to

include records from each month in a year. Thus, the

records of the first page (due to the volume of work

required) on the 5th, 15th and 25th day of every month

(interval of 10 days) from 2012 to 2015 was scanned.

If any of the dates falls on a weekend or public holiday,

then the next preceding date was selected. This was to

avoid using data from dates that have unusually lower

hospital turn-out, with its associated imbalances. For

the entry to be included in the analysis, it must fulfil

the following conditions: (1) the entry has information

on disease treated, (2) the entry is a malaria case, and

(3) residence or place of the patient is known and

traceable to a community in the district.

Fig. 3 Malaria susceptibility index map
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Out of the sampled health records (4193), only

those which were diagnosed of malaria and satisfy

the two other conditions above (a total of 2776) were

geocoded in ArcMap 10.1. This means that at least

66.2 % of the entries were malaria cases. This is

higher than 63 % identified by Aikins and Dzikunu

(2006) in the then Saboba-Chereponi district—a

sign that malaria incidence is increasing in the

district. A large percentage of the rejected entries

were non-malaria cases such as typhoid, Respiratory

Tract Infections (RTI) etc. However, few entries

(approximately 0.6 %), though malaria cases were

rejected because they did not meet the third condi-

tion above.

GIS analysis

GIS data and sources

The GIS data used are vector layers showing district

boundaries, settlements, rivers and the roads, and these

were acquired from GeoCommunity.1 All datasets

were country data and were clipped to the extent of

Saboba district using the clip tool.

GIS data ground truthing and data preparation

To ensure the accuracy of the GIS datasets, locations

of river confluences and identifiable infrastructures

such as road junctions were taken using Garmin

Oregon 450 GPS. These control points were used to

check and adjust the positional accuracy of the

datasets.

Generating malaria susceptibility index map

The malaria susceptibility index (MSI) of each

community were geocoded and interpolated using

interpolation tool in ArcMap 10.1. This generated

malaria susceptibility index map (Fig. 3). The MSI

map was reclassified into very high, high, low and

very low susceptibility levels (Fig. 4) using equal

intervals, that is, 0–2.5, 2.6–5.0, 5.1–7.5, and

7.6–10.

Extraction of malaria cases within each susceptibility

index levels and model testing

The clinical malaria incidence within each suscepti-

bility index levels, that is, very high, high, low and

very low (Fig. 4) were extracted. These were then

summed to determine whether a greater portion of the

clinical malaria cases were recorded in the areas

predicted to have high malaria susceptibility level.

The areas covered by each susceptibility level were

also extracted.

Results

Table 1 depicts the 25 environmental variables

(grouped into 8 thematic areas) used to generate

malaria susceptibility index, and consequently for the

geospatial model. These variables were generated

from the first stage of the questionnaire administration.

Figure 3 shows the malaria susceptibility index

(MSI) map. The brownish coloured areas indicate a

higher MSI while the greenish coloured areas indicate

a lower MSI. The MSI is generally higher at the east-

central part, the south-eastern part, the northern part

and some few areas in the central part of the district.1 http://www.geocomm.com/.

Malaria Susceptibility Levels
Very Low

Very High

Low

High

Fig. 4 Malaria susceptibility levels

1108 GeoJournal (2017) 82:1101–1111
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Figure 4 shows malaria susceptibility levels map, that

is, very high, high, low and very low levels. The

highest possible MSI is 10.

Table 2 depicts the malaria susceptibility levels and

its share of clinical malaria incidence in the district.

The area classified as very low susceptibility level

covers about 23.4 % of the landmass in the district but

only 0.1 % of the clinical malaria cases were recorded

in this area. The area of the district which the model

predicted to have low susceptibility level covers about

39.1 % of the total district’s landmass, but only 3.1 %

of the clinical malaria cases were recorded in this area

over the study period. Areas classified by the model as

high susceptibility level cover about 35.9 %, but

contributed 24.5 % of the recorded malaria incidence

over the study period. The very high susceptibility

level areas cover only 1.7 % of the district’s landmass

but contributed 72.3 % of the clinical malaria cases

over the study period.

Discussion

Twenty-five environmental variables were identified

as affecting malaria occurrences specific to the

district. Conspicuously missing in these variables

are: (1) closeness to rivers, and (2) the three main

climatic factors that affect malaria transmission, that

is, temperature, rainfall and relative humidity. For

closeness to rivers, a significant correlation has been

established between distances to rivers and malaria

prevalence (Rai et al. 2013). However, studies have

also found that there exist no significant relationship

between closeness to rivers and malaria prevalence in

Uganda (Niringiye and Douglason 2010) and in

Northern Ghana (Kursah 2009). What then accounts

for this contrary findings? The explanation which

resolves the contradictory findings is the nature of the

rivers—whether stagnant or swift-flowing, with the

former facilitating breeding of mosquitoes than the

latter does. This explanation has been established

elsewhere. Kenea et al. (2011), for example, found that

there was significant inverse relationship between

anopheline larvae and water current. This argument

reaffirmed a general belief that stagnant water bodies,

which may be too tiny to be captured in remotely

sensed data, are the major sources of breeding

mosquito larvae.

The three main climatic factors that affect malaria

transmission, that is, temperature, rainfall amount and

humidity were also not mentioned by the public health

workers and not included in the model. This may seem

surprising as some previous studies have found a

relationship between malaria prevalence on the one

hand and rainfall amount, temperature and humidity

on the other (Cohen et al. 2008; Gemperli et al. 2006;

Raso et al. 2012). The argument is that these factors

both directly or indirectly affect the development and

occurrence of the malaria vector (anopheles mosqui-

toes) and, therefore, affect the geographical distribu-

tion of malaria (Raso et al. 2012). Also, Akpalu and

Codjoe (2013) found that humidity and rainfall

influenced malaria prevalence in Ghana. This is,

however, not surprising because the study areas for

these studies are either countrywide or large-scale

where the three climatic variables may vary greatly

over space. Thus, any geographic study of malaria

prevalence should factor in these variables when their

scale may vary. However, the study area, Saboba

district, is too small to cause variations in these

climatic variables. It is not surprising that no single

public health worker mentioned any of these climatic

variables. Vegetative type or index was also not

mentioned for the same reason—it does not vary

greatly within the district.

Though Saboba district recorded high malaria cases

(about 66.2 %), the prevalence of the disease is

concentrated in few areas (1.7 % of the district’s

landmass) giving rise to malaria hot spots (Fig. 4)

which need appropriate intervention. ArcMap

Table 2 Malaria

susceptibility levels and its

share of clinical malaria

incidence

Susceptibility level Area (m2) Percent (%) Share of malaria incidence Percent (%)

Very low 415,100 23.4 3 0.1

Low 693,500 39.1 86 3.1

High 636,200 35.9 681 24.5

Very high 30,200 1.7 2006 72.3

Total 1,775,000 100.0 2776 100.0
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application was enormously valuable in identifying

and displaying these hot spots. It unmasked a profound

heterogeneity in the endemic of malaria prevalence

that had previously been concealed within the sum-

mary data on incidence of malaria in the district. The

study also revealed how GIS can model and predict

malaria occurrences. This is useful so that intervention

measures can be sent to areas that need them the most.

Thus, GIS, as has shown, can be used to make spatio-

temporal modelling and prediction of malaria

occurrences.

It is important to note that only 1.7 % of the area

covered by the district (Table 2) contributed 72.3 % of

the malaria cases during the study period. These areas,

forming the hot spots are associated with higher

concentration of the environmental variables linked to

malaria transmission. Chiefly of these variables are the

presence of stagnant water bodies, dug-out pits,

KVIPs, swampy surroundings, and bushes or garbage

heaps. This finding confirms Nkuo-Akenji et al. (2006)

who found that areas with houses surrounded by

bushes or garbage heaps and swamps or stagnant water

showed higher malaria parasite prevalence and den-

sities, compared with those from cleaner surroundings.

The public health workers in the districts under-

stand the dynamics of malaria susceptibility as their

weights which were used in the model, predicted

malaria incidence, to a large extent, accurately. This

is because 96.8 % of the clinical malaria cases came

from areas which the model predicted to have very

high (72.3 %) and high (24.5 %) susceptibility

levels. The 96.8 % is higher than 89 % achieved

by (Rincón-Romero and Londoño 2009) in a similar

study. It goes to say that the public health workers

are well-informed about malaria dynamics in the

district.

The interpretation of the result must be done with

caution, especially with lower rates in the southern

part and the western ‘‘horn’’. This is because those

areas may have very few clinical malaria cases not

because of fewer malaria occurrences, but because

people from those areas may seek higher rated health

facilities in the neighbouring districts due to shorter

distances. However, due to ethnic affinity, language

barrier and the three-tier referral system within the

districts, it is common to see people around these

fringes coming to the district hospital in the capital,

Saboba, even if they are closer to the district hospitals

in the neighbouring districts.

The usefulness of GIS for modelling and predicting

malaria prevalence for a focused intervention depends

on the availability of accurate spatial data on malaria

cases. However, such could not be said to be readily

available in the district, as the data are manually

recorded. It is recommended that data management

system with spatial variable be implemented in the

health facilities in the district, in order to make it easier

to track and map malaria prevalence. Also, the habit

whereby the spatial variable is dropped after the out-

patient department (OPD) stage has to be discouraged,

so as to allow spatial analysis of health data in the

district.

Conclusion

Identifying the geography of malaria will help deci-

sion makers locate the particular area with the health

problem and to design area-specific interventions.

Using ArcMap 10.1, this study determined malaria

susceptibility index and with geospatial modelling,

predicted malaria occurrence. Clinical malaria inci-

dence was then geocoded and tested to see the

accuracy of the prediction. The results show that

72.3, 24.5, 3.1 and 0.1 % of the clinical malaria cases

were found in areas that were predicted to have very

high, high, low and very low susceptibility levels,

respectively. The conclusion is that modelling such as

this can help determine spatio-temporal prediction and

mapping of malaria incidence. This study has shown

that the public health workers truly understand the

dynamics of malaria infection in the district. However,

it is not clear if the other stakeholders such as NGOs

and other Civil Society Organisations (CSOs), and the

general public in the district understand these dynam-

ics. It is recommended that studies be conducted using

these other stakeholders to determine if their knowl-

edge of malaria infection is adequate to predict the

spatial distribution of malaria in the district. It is also

suggested that further modelling of this kind be

conducted periodically for temporal analysis and

comparisons.
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